Welcome to 2nd Semester Chemistry!!! Now let's review Stoichiometry!!! Hudecek, 2010.

Directions: All problems require a balanced chemical equation. As always, you must show all calculations with proper units in order to earn credit for your assignment.

A. Basic Stoichiometry and Percent Yield

- 1. Iron metal reacts with an aqueous solution of copper(II) sulfate by single replacement to produce iron(III) sulfate.
 - **a.** What mass of copper is produced from 4.50 moles of iron?
 - **b.** How many moles of iron(III) sulfate are formed from 3.75 grams of iron?
 - **c.** What is the percent yield if 9.10 grams of copper metal are recovered from 25.0 grams of copper(II) sulfate?
- 2. a. Write the chemical equation for the combustion of butane (C_4H_{10}) .
 - **b.** How many moles of oxygen would be needed to react with 3.50 kilograms of butane?
 - **c.** How many grams of oxygen would be needed to produce 350.0 milligrams of carbon dioxide gas?
 - **d.** What volume of carbon dioxide gas, in liters at STP, would be produced from the complete combustion of 85.0 grams of butane? (density of CO_2 at STP = 1.997 g/L)
- **3.** Iron is generally produced from iron ore through a reaction in a blast furnace where iron(III) oxide reacts with carbon monoxide to produce iron metal and carbon dioxide.
 - **a.** What mass of carbon monoxide is needed to completely react with 5.875 kilograms of iron(III) oxide?
 - **b.** What mass of iron can be produced from 78.85 grams of iron(III) oxide if a 92.0% yield is expected?
 - **c.** What is the percent yield if 27.2 grams of iron are collected from 42.0 grams of the oxide?
- **4.** Aqueous solutions of aluminum chloride and ammonium carbonate react by double replacement to produce a precipitate of aluminum carbonate.
 - **a.** How many moles of aluminum chloride are needed to react with 6.50 moles of ammonium carbonate?
 - **b.** How many moles of ammonium chloride are produced from the reaction of a solution containing 73.25 grams of ammonium carbonate?
 - **c.** What mass of precipitate can be collected from a solution that contains 23.55 grams of aluminum chloride if the percent yield is expected to be 95.2%?
- 5. In the commercial production of the element arsenic, arsenic(III) oxide is heated with carbon, producing carbon dioxide and arsenic.
 - **a.** What is the percent yield if 5.33 grams of arsenic are produced from 8.87 grams of arsenic(III) oxide?
 - **b.** What mass of arsenic is recovered from 125.0 kilograms of arsenic(III) oxide if the percent yield is 92.50%?
- **6.** A solution with 0.250 kg of aqueous potassium carbonate reacts with a solution containing an excess quantity of iron(III) chloride to produce a precipitate of iron(III) carbonate.
 - **a**. How many moles of iron(III) chloride are theoretically used up in this reaction?
 - **b.** What is the percent yield if 158.2 grams of precipitate are collected?

B. Limiting Reactants

- 7. 4.50 moles of aluminum hydroxide are allowed to react with 7.00 moles of sulfuric acid.
 - **a.** Determine the limiting reactant showing a calculation of proof.
 - **b.** How many moles of aluminum sulfate should theoretically form?
 - **c.** How many moles of the excess reactant remain after the reaction is complete?
- **8.** 45.0 grams of hexane (C_6H_{14}) react by combustion in the presence of 115.0 grams of oxygen gas.
 - **a.** Determine the limiting reactant showing a calculation of proof.
 - **b.** Calculate the mass of excess reactant.
 - c. How many moles of carbon dioxide are theoretically produced?
 - **d.** How many grams of water vapor are theoretically produced?
- **9.** How many grams of aluminum oxide would theoretically be produced when 15.0 grams of aluminum metal is allowed to react with 10.0 grams of oxygen gas?
- **10.** One of the steps in the commercial production of nitric acid involves reacting ammonia gas with oxygen gas to produce nitrogen monoxide and water.
 - **a.** Which reactant is limiting if 1.50 grams of ammonia are allowed to react with 2.75 grams of oxygen gas?
 - **b.** How many grams of nitrogen monoxide and water form?
 - **c.** How many grams of the excess reactant remains?
- **11.** A mixture of 50.0 grams of acetylene (C₂H₂) and 175.0 grams of oxygen is ignited in a welding torch.
 - **a.** Identify the limiting reactant and show a calculation of proof.
 - **b.** How many grams of acetylene, oxygen, carbon dioxide, and water are present after the reaction is complete?
- **12.** 45.0 grams of magnesium metal reacts with a solution containing 150.0 grams of aluminum nitrate through single replacement.
 - **a.** Write out the balanced chemical equation for this reaction and determine the limiting reactant, showing a calculation of proof.
 - **b.** What mass of excess reactant is left over?
 - **c.** Calculate the mass of aluminum metal expected if the percent yield is 89.5%.
- **13.** A reaction between hydrazine, N₂H₄, and dinitrogen tetroxide, has been used to launch rockets into space. The reaction produces nitrogen gas and water vapor.
 - **a.** Identify the excess reactant and calculate the mass of it that remains from the reaction of 500. grams of both hydrazine and dinitrogen tetroxide.
 - **b.** If 6.25×10^6 kg hydrazine and 9.75×10^6 kg dinitrogen tetroxide are allowed to react, what volume of nitrogen gas at STP would form (density N_2 @ STP = 1.25 g/L)

Ch 9 Stoichiometry Review Problems, 2nd Semester, 2010.

1.	a.	429 g Cu	7.	a.	Al(OH) ₃ is limiting
	b.	0.0336 mol Fe ₂ (SO ₄) ₃		b.	2.25 mol Al ₂ (SO ₄) ₃
	c.	91.5%		c.	0.25 mol H ₂ SO ₄ excess
2.	b.	391 mol O ₂	8.	a.	O_2 is limiting
	c.	0.414 g O ₂		b.	12.4 g C ₆ H ₁₄ excess
	d.	129 L CO ₂		c.	2.270 mol CO ₂
				d.	47.72 g H ₂ O (g)
3.	a.	3091 g CO			
	b.	50.74 g Fe	9.		21.2 g Al ₂ O ₃
	c.	92.5%			
			10.	a.	O ₂ is limiting
4.	a.	4.33 mol AlCl ₃		b.	2.06 g NO, 1.86 g H ₂ O
	b.	1.524 mol NH ₄ Cl		c.	0.33 g NH ₃ excess
	c.	19.7 g Al ₂ (CO ₃) ₃			
			11.	a.	C ₂ H ₂ is limiting
5.	a.	79.3%		b.	no C ₂ H ₂ left, 21 g O ₂
	b.	87.57 kg As			169 g CO ₂ , 34.6 g H ₂ O
			12.	a.	Al(NO ₃) ₃ is limiting
6.	a.	1.21 mol FeCl ₃		b.	19.3 g Mg excess
	b.	90.4%		c.	17.0 g Al
			13.	a.	152 g N ₂ H ₄ excess
				b.	6.55 x 10 ⁹ L N ₂ @ STP